Wildlife Research

Impacts of rabbit grazing on pasture in Hawke's Bay, New Zealand

Journal:	Wildlife Research
Manuscript ID	WR16016
Manuscript Type:	Research Paper
Date Submitted by the Author:	25-Jan-2016
Complete List of Authors:	Ruscoe, Wendy; Manaaki Whenua - Landcare Research, Glen, Alistair; Landcare Research, Perry, Michael; Landcare Research New Zealand Dickson, Rod; Hawke\'s Bay Regional Council Forrester, Guy; Landcare Research
Keyword:	cost-benefit analyses, invasive species, management strategies, pest management

1	Impacts of rabbit grazing on pasture in Hawke's Bay, New Zealand	
2		
3	Wendy A. Ruscoe ^{1,5} , Alistair S. Glen ^{2*} , Michael Perry ³ , Rod Dickson ⁴ and Guy Forrester ¹	
4		
5	¹ Landcare Research, PO Box 69040, Lincoln 7640, New Zealand	
6	² Landcare Research, Private Bag 92170, Auckland 1142, New Zealand	
7	³ Landcare Research, Private Bag 11052, Manawatu Mail Centre, Palmerston North 4442,	
8	New Zealand	
9	⁴ Hawke's Bay Regional Council, 159 Dalton St, Napier 4110, New Zealand	
10	⁵ Current address: Institute for Applied Ecology, University of Canberra, ACT 2601, Australia	
11	*Author for correspondence (Email: glena@landcareresearch.co.nz)	
12		
13	Running head: Rabbit grazing impacts on pasture	

14	Abstract	
15	Context. Introduced rabbits (Oryctolagus cuniculus) compete with livestock for pasture in	
16	New Zealand; however, the economic value of the resulting losses is poorly understood.	
17	Aims. We aimed to (1) estimate the impact of rabbit grazing on pasture biomass in Hawke's	
18	Bay, North Island, New Zealand, (2) estimate the cost of rabbit grazing in terms of lost	
19	livestock production, and; (3) compare this with the cost of rabbit control.	
20	Methods. We used a grazing exclusion experiment to measure pasture growth under three	
21	treatments: rabbits and livestock excluded; livestock excluded; no grazers excluded. We then	
22	estimated the number of additional sheep that could have been grazed per hectare if rabbit	
23	grazing was reduced by lethal control. Finally, we compared the cost of rabbit control with	
24	expected increases in stock yield to determine whether rabbit control is economically	
25	beneficial.	
26	Key results. Depending on their relative abundance, rabbits consumed enough pasture to	
27	support an additional 6.2–17.5 ewes ha ⁻¹ . For sheep graziers this translates to an annual loss	
28	of income of NZ\$620–1750 ha ⁻¹ . The estimated net annual benefit of controlling rabbits	
29	ranged from NZ\$577 ha ⁻¹ at low rabbit abundance to NZ\$1707 ha ⁻¹ at high abundance.	
30	Conclusions. Rabbit control is economically justified in Hawke's Bay even when rabbit	
31	abundance is relatively low.	
32	Implications. Graziers should not wait until rabbit abundance is high before conducting	
33	rabbit control. As well as increasing livestock production, maintaining low rabbit abundance	
34	may also prevent invasive predators from reaching high population densities.	
35		
36	Introduction	
37	In New Zealand, introduced European rabbits (Oryctolagus cuniculus) damage pasture and	
38	native vegetation (Norbury 1996; Scroggie et al. 2012), and support inflated numbers of	
39	invasive predators (Cruz et al. 2013). However, few studies have measured the biological and	
40	economic impacts of rabbit grazing in New Zealand (Lough 2009). Domestic sheep (Ovis	
41	aries) are the main farmed animals, but wild rabbits may reduce the amount of pasture	

42

available to them (e.g. Norbury et al. 2002; Norbury and Reddiex 2005). Rabbits reportedly

impose significant costs on agricultural production, with annual damage estimates ranging 43

44 from NZ\$10 to 100 million (Norbury and Reddiex 2005). The variability in estimates is due

to a lack of experimental data, as well as variation in rabbit abundance.

45 46

Wildlife Research

47	Assessing the economic viability of rabbit control is currently hindered by a lack of	
48	quantitative information on the impacts of rabbits in different parts of New Zealand. There	
49	have been few studies on the diet of rabbits in New Zealand (but see Fraser 1985; Reddiex	
50	1998), or on the relationship between rabbit abundance and pasture growth (Norbury and	
51	Norbury 1996; Scroggie et al. 2012). These studies all took place on the South Island.	
52		
53	We assessed the impact of various rabbit densities on pasture biomass in Hawke's Bay using	
54	a grazing exclusion experiment in which we measured biomass consumption by livestock and	
55	rabbits. Assuming pasture consumed by rabbits would otherwise have been available to	
56	livestock, we then estimated the number of additional sheep that could have been grazed per	
57	hectare in the absence of rabbits. Finally, we compared the cost of rabbit control with	
58	expected increases in stock yield to determine whether rabbit control is economically	
59	beneficial.	
60		
61	Methods	
62	Study site and experimental design	
63	Opouahi Station is a 2000-ha grazing property in Hawke's Bay, North Island, New Zealand	
64	(39° 08' 25" S, 176° 48' 02" E). Starting in May 2012, Hawke's Bay Regional Council	
65	(HBRC) controlled rabbits across 260 ha of Opouahi Station using a combination of burrow	
66	fumigation and shooting. Rabbit numbers were monitored in this area before and after control	
67	using spotlight counts conducted along an 18-km route. During the post-control period,	
68	spotlight counts were also conducted along a 13-km route in an adjacent area of similar	
69	habitat where no rabbit control had taken place. Each spotlight count was repeated a few	
70	nights later, and rabbit abundance was estimated for each 1-km section as the mean number	
71	of animals seen across both counts.	
72		
73	In October 2012, we established 45 monitoring sites on Opouahi, both within and outside the	
74	rabbit control area. Sites were at least 100 m apart, and were assumed to be spatially	
75	independent. Based on spotlight counts, each site was designated as having low (<5 km ⁻¹),	
76	medium (5–15 km ⁻¹) or high (>15 km ⁻¹) rabbit abundance ($n = 15$ sites in each category).	
77	Each site had four plots measuring 250×250 mm. One plot was surrounded by a cage	
78	excluding all grazers, and one plot had a cage that excluded livestock but not rabbits. The	
79	other two plots were un-caged experimental controls. All plots were clipped to sample the dry	
80	weight of pasture. Sampling was repeated four times at monthly intervals (November 2012 –	

81	February 2013) to measure pasture growth. For temporal independence, the locations of the	
82	plots were changed each month. Samples were oven-dried for 48 hours at 80° C and then	
83	weighed using a digital balance.	
84		
85	Data analysis	
86	Pasture weight data were analysed with mixed effects models using the REML procedure in	
87	GenStat (VSN International, 14 th edn). Sites were treated as random effects in the modelling	
88	process, and month and treatment as fixed effects. The effect of excluding grazers on pasture	
89	growth was measured by estimating the interaction between month and treatment. This was	
90	estimated separately for areas of high, medium, and low rabbit abundance.	
91		
92	Economic impact	
93	We used published data to estimate the economic impact of grazing by rabbits. Pasture	
94	consumption by an average ewe was estimated at 1.6 kg dry matter per day, and we assumed	
95	an average stocking rate of 15 ewes ha ⁻¹ (Beef & Lamb NZ 2012). Average pasture growth	
96	was estimated at 48 kg dry matter ha ⁻¹ day ⁻¹ . The sale price of an average ewe was assumed	
97	to be NZ\$100 (Beef & Lamb NZ 2012). The impact of rabbit grazing was estimated in terms	
98	of 'ewe equivalents', which is the number of additional ewes that could be grazed per hectare	
99	in the absence of rabbits.	
100		
101	The cost of controlling rabbits using 1080 poison (sodium fluoroacetate) was estimated using	
102	records of previous control operations by HBRC. These were set at \$150 ha ⁻¹ for knock-	
103	down, and \$30 ha ⁻¹ for annual maintenance, giving an average cost of \$43 ha ⁻¹ yr ⁻¹ over 10	
104	years.	
105		
106	Results	
107	Rabbit abundance	
108	Before rabbit control, spotlight counts in the rabbit-removal area ranged from 1.5–58 rabbits	
109	km ⁻¹ (mean 17.9). Between May and July, 673 rabbits were shot and 747 burrows gassed.	
110	Spotlight counts along the same route in August ranged from 0 to 3.5 rabbits km ⁻¹ (mean	
111	0.6). In the non-treatment area, spotlight counts in August ranged from 0 to 52.5 rabbits km ⁻¹	
112	(mean 10.3).	
113		

Wildlife Research

114	Hares (Lepus europaeus) were detected in very low numbers (0.08 km ⁻¹) before rabbit	
115	control, and eight individuals were removed opportunistically during rabbit shooting. No	
116	hares were detected after control. Other pests opportunistically removed were 13 cats (Felis	
117	catus), 10 possums (Trichosurus vulpecula), and a ferret (Mustela furo) (HBRC, unpublished	
118	data).	
119		
120	Pasture growth	
121	Pasture weight was significantly affected by treatment in areas of high ($\chi^2_3 = 365.17$, P	
122	< 0.001), medium (χ^2_3 = 155.16, P < 0.001) and low rabbit abundance (χ^2_3 = 69.74, P <	
123	0.001). Dry weight of pasture was highest in the plots where both rabbits and livestock were	
124	excluded, lower in plots where only livestock were excluded, and lower still on the control	
125	plots where no grazers were excluded. However, the treatment effect diminished with rabbit	
126	abundance (Fig. 1).	
127		
128	There was a significant interaction between month and treatment on pasture weight in areas	
129	of high (χ^2) = 41.50, $P < 0.001$) and medium rabbit abundance (χ^2) = 20.63, $P = 0.014$). For	
130	areas of low rabbit abundance the interaction was not significant ($\chi^2_9 = 10.38$, $P = 0.32$).	
131		
132	Economic Impact	
133	Pasture consumption by rabbits was greatest in areas of high abundance, but there was little	
134	difference between areas of medium and low abundance (Table 1). Rabbits were estimated to	
135	consume 10–28 kg dry matter ha ⁻¹ day ⁻¹ , equivalent to 6.2–17.5 ewes ha ⁻¹ . This translates to	
136	an estimated loss of income for sheep graziers of \$620–1750 ha ⁻¹ yr ⁻¹ . Therefore, the net	
137	benefit of controlling rabbits is estimated at \$577–1707 ha ⁻¹ yr ⁻¹ .	
138		
139	Discussion	
140	Our results show that rabbit control is likely to be economically beneficial across the range of	
141	rabbit densities encountered in this experiment. In areas where rabbits were abundant, their	
142	exclusion had a marked effect on pasture biomass. Although the size of this effect decreased	
143	with rabbit abundance, even at low abundance the projected benefits of rabbit control	
144	outweighed the cost by an order of magnitude.	
145		

146	Our results support the findings of previous studies in New Zealand. For example, Barlow		
147	(1987) estimated the loss to sheep grazing systems caused by rabbits in New Zealand at \$1.1		
148	\$2.1 per rabbit, while Allen et al. (1995) estimated that the grazing effect of 8–15 rabbits is		
149	equivalent to that of one sheep. Norbury and Norbury (1996) excluded rabbits from		
150	experimental plots in Central Otago, then compared pasture composition and biomass with		
151	matched plots that were open to rabbits. During spring, when plant growth was most rapid,		
152	exclusion of rabbits increased pasture yield six-fold (Norbury and Norbury 1996).		
153			
154	Strong impacts of rabbit grazing have also been documented on Australian pasture. For		
155	example, Gooding (1955) estimated that light to moderate densities of rabbits consumed 10-		
156	47% of pasture biomass in Western Australia. At very high densities, rabbits ate 86-100% of		
157	pasture biomass (Gooding 1955). Similarly, in semi-arid South Australia, Mutze (1991)		
158	estimated that rabbits consumed seven times the biomass eaten by sheep at average stocking		
159	rates. The economic benefit of rabbit biocontrol in Australia over the 60 years to 2011 has		
160	been estimated at AUS\$70 billion (Cooke et al. 2013).		
161			
162	In central and eastern Otago, Scroggie et al. (2012) found that pasture growth was largely		
163	unaffected by low rabbit and hare densities. Grazing by rabbits and hares began to have a		
164	noticeable effect on pasture growth when spotlight counts reached 5 km ⁻¹ in the most		
165	degraded areas, or 20 km ⁻¹ in the least degraded areas (Scroggie et al. 2012).		
166			
167	Other studies have used spatial and/or temporal variation in rabbit numbers to investigate		
168	their impacts on vegetation. For example, after rabbit haemorrhagic disease was illegally		
169	introduced in 1997, reduced rabbit abundance in tussock grasslands in Otago caused an		
170	increase in vegetation cover. This was mainly due to highly palatable introduced plant species		
171	(Norbury et al. 2002).		
172			
173	Our experiment could potentially have been influenced by some confounding effects that are		
174	difficult to eliminate. The fact that rabbits had access to the caged plots that were designed		
175	only to exclude livestock leads to the possibility of a 'pantry effect' (Batzli 1983). Because		
176	more pasture was available in these plots, rabbits may have fed preferentially in them. This		
177	would exaggerate the difference between these and the plots from which all grazers were		
178	excluded, thus under-estimating the impact of livestock and over-estimating the proportion of		
179	total grazing pressure that was due to rabbits.		

180		
181	Although our results suggest rabbit control is likely to be economically viable across a wide	
182	range of rabbit densities, the magnitude of benefits is likely to vary in space and time. For	
183	example, in eastern Australia modelling suggests economic gains from rabbit control are	
184	likely to be greatest in dry periods when competition for pasture is most intense (Thompson	
185	2000).	
186		
187	Acknowledgements	
188	We thank Hawke's Bay Regional Council for financial and logistical support, and Landcorp,	
189	the managers of Opouahi Station, for access to the study site. We are grateful also to M.	
190	Campion and S. Hough for processing pasture samples, and to D. Forsyth for helpful	
191	discussions. The manuscript was improved greatly by comments from D. Latham.	
192		
193	References	
194	Allen, R. B., Wilson, J. B., and Mason, C. R. (1995). Vegetation change following exclusion	
195	of grazing animals in depleted grassland, Central Otago, New Zealand. Journal of	
196	Vegetation Science 6 , 615-626.	
197	Barlow, N. D. (1987). Pastures, pests and productivity: simple grazing models with two	
198	herbivores. New Zealand Journal of Ecology 10, 43-55.	
199	Batzli, G. O. (1983). Responses of arctic rodent populations to nutritional factors. Oikos 40,	
200	396-406.	
201	Beef & Lamb NZ. (2012). 'A Guide to Feed Planning for Sheep Farmers'. (Beef & Lamb NZ	
202	Published online at	
203	http://www.beeflambnz.com/Documents/Farm/A%20guide%20to%20feed%20plann	
204	ng%20for%20sheep%20farmers.pdf).	
205	Cooke, B., Chudleigh, P., Simpson, S., and Saunders, G. (2013). The economic benefits of	
206	the biological control of rabbits in Australia, 1950-2011. Australian Economic	
207	History Review 53, 91-107.	
208	Cruz, J., Glen, A. S., and Pech, R. P. (2013). Modelling landscape-level numerical responses	
209	of predators to prey: the case of cats and rabbits. PLoS ONE 8, e73544.	
210	Fraser, K. W. (1985). 'Biology of the rabbit (Oryctolagus cuniculus (L.)) in Central Otago,	
211	New Zealand, with emphasis on behaviour and its relevance to poison control	
212	operations' PhD Thesis (University of Canterbury: Christchurch)	

213	Gooding, C. D. (1955). Rabbit damage to pastures. <i>Journal of Agriculture Western Australia</i>	
214	4 , 753-755.	
215	Lough, R. S. (2009). 'The Current State of Rabbit Management in New Zealand'. (MAF	
216	Biosecurity: Wellington).	
217	Mutze, G. J. (1991). Long-term effects of warren ripping for rabbit control in semi-arid South	
218	Australia. The Rangeland Journal 13, 96-106.	
219	Norbury, D. (1996). The effect of rabbits on conservation values. Science for Conservation	
220	34 , 1-32.	
221	Norbury, D. C., and Norbury, G. L. (1996). Short-term effects of rabbit grazing on a	
222	degraded short-tussock grassland in Central Otago. New Zealand Journal of Ecology	
223	20 , 285-288.	
224	Norbury, G., Heyward, R., and Parkes, J. (2002). Short-term ecological effects of rabbit	
225	haemorrhagic disease in the short-tussock grasslands of the South Island, New	
226	Zealand. Wildlife Research 29, 599-604.	
227	Norbury, G., and Reddiex, B. (2005). European rabbit Oryctolagus cuniculus (Linnaeus,	
228	1758). In: 'The Handbook of New Zealand Mammals. 2nd Edition.' (Ed C. M. King).	
229	pp. 131-150. (Oxford University Press: Melbourne).	
230	Reddiex, B. (1998). 'Diet selection of European rabbits (Oryctolagus cuniculus) in the semi-	
231	arid grasslands of the Mackenzie Basin, New Zealand'. Thesis. (Lincoln University:	
232	Lincoln).	
233	Scroggie, M. P., Parkes, J. P., Norbury, G., Reddiex, B., and Heyward, R. (2012). Lagomorph	
234	and sheep effects on vegetation growth in dry and mesic grasslands in Otago, New	
235	Zealand. Wildlife Research 39, 721-730.	
236	Thompson, D. (2000). 'Rabbit Control: Economic Guidelines'. (Centre for Agricultural and	
237	Regional Economics: Armidale).	

Table 1. Estimated impact on pasture of European rabbits (*Oryctolagus cuniculus*) at high, medium and low relative abundance in Hawke's Bay, North Island, New Zealand

238

239

Rabbit	Daily consumption	
abundance	(kg dry matter/ha/day)	Equivalent Ewes
High	28	17.5
Medium	9	5.6
Low	10	6.2

241

242

- 243 Figure captions
- Figure 1. Mean dry weight of pasture samples by month and treatment in areas of (a) high,
- 245 (b) medium, and (c) low rabbit abundance.

246 Figure 1

247 (a)

248

249 (b)

250251

252253